Papers


Accepted papers

  • S. Pasotti and E. Zizioli. Slid Product of Loops: a Generalization. Results in Mathematics 65 (2014), 193-212, 10.1007/s00025-013-0340-8.
  • H. Karzel, S. Pasotti and S. Pianta. A class of fibered loops related to general hyperbolic planes. Aequationes Math. 87 (2014), 31-42, 10.1007/s00010-012-0164-8.
  • S. Pasotti, S. Pianta. The limit rotation loop of a hyperbolic plane. Applied Mathematical Sciences 7 (2013), no. 117-120, 5863-5878.
  • S. Pasotti and E. Zizioli. A construction of loops by means of regular permutation sets. Electronic Notes in Discrete Mathematics 40 (2013), 385-389.
  • S. Pasotti and E. Zizioli. Loops, regular permutation sets and graph colourings. Electronic Notes in Discrete Mathematics 40 (2013), 299-303.
  • S. Pasotti and E. Zizioli. Loops with two-sided inverses constructed by a class of regular pemutation sets. J. Geom., 100 (2011), no. 1, 129-145. -
  • A. Blunck, S. Pasotti and S. Pianta. Generalized Clifford parallelisms. Innov. Incidence Geom., 11 (2010), 197-212. -
  • S. Pasotti. Regular parallelisms in kinematic spaces. Discrete Math., 310 (2010), no. 22, 3120-3125.   -
  • S. Pasotti. Translation structures with a principal line. Note Mat., 29 (2009), no. 2, 123-142.  
  • E. Ballico, S. Pasotti and F. Prantil. Holomorphic triples on bielliptic curves. Adv. Geom., 9 (2009), 125-136.  
  • S. Pasotti and F. Prantil. Holomorphic triples of genus 0. Cent. Eur. J. Math., 6 (2008), 129-142.
  • S. Pasotti and F. Prantil. Holomorphic triples on elliptic curves. Results Math., 50 (2007), no. 3-4, 227-239.
  • E. Ballico, S. Pasotti and F. Prantil. Rational curves in grassmannians and their Plücker embeddings: an application. Int. Journal of Contemp. Math. Sciences, 1 (2006), no. 9-12, 417-418.   
  • E. Ballico, S. Pasotti and F. Prantil. Geometric properties (strong t-spannedness) of generic α-stable coherent systems on smooth curves. Int. Journal of Pure and Applied Math., 20 (2005), no. 3, 369-374.  

Preprints and internal reports

  • H. Karzel, M. Marchi, S. Pasotti, S. Pianta. Horocycles of the hyperbolic plane. In preparation.
  • S. Pasotti, E. Zizioli. Loops, regular permutation sets and colourings of directed graphs. Quaderni del Seminario Matematico di Brescia, n 07/2013.    - (electronic version).
  • S. Pasotti, E. Zizioli. Slid product of loops: a generalization. Quaderni del Seminario Matematico di Brescia, n 12/2012.    - (electronic version)
  • H. Karzel, S. Pasotti, S. Pianta. A new class of fibered loops related to hyperbolic plane. Quaderni del Seminario Matematico di Brescia, n. 29/2011.    - (electronic version)
  • A. Blunck, S. Pasotti and S. Pianta. Generalized Clifford parallelisms. Quaderni del Seminario Matematico di Brescia, n. 20/2007.   - (electronic version)
  • S. Pasotti. On translation structures with a normal principal line. Quaderni del Seminario Matematico di Brescia, n. 16/2006.   - (electronic version)
  • S. Pasotti. The canonical model for algebraic curves. Quaderni del Seminario Matematico di Brescia, n. 14/2006.   - (electronic version)
  • H. Havlicek and S. Pasotti. A Survey on the Notion of Regulus in a Skew Space. Quaderni del Seminario Matematico di Brescia, n. 17/2003.   - (electronic version)

Notes

  • S. Pasotti. Matematiche Complementari - Esercitazioni. Notes of the course I held at Università Cattolica del Sacro Cuore of Brescia, 2004.  

Other

  • S. Pasotti. Partizioni di Gruppi e Strutture Geometriche. Degree thesis at Università Cattolica del Sacro Cuore of Brescia, under the supervision of Prof. Silvia Pianta and Prof. Mario Marchi, 2002.   -
  • S. Pasotti. Vector bundles on algebraic curves: holomorphic triples in low genus. Ph.D. thesis at the University of Trento (Italy) under the supervision of Prof. Edoardo Ballico, 2006.  

Erdös number

My actual Erdös number is 4, as shown by the following publications:

  1. L. Babai, P. Erdös and S.M. Selkow. Random graph isomorphism. SIAM J. Comput. 9 (1980), no. 3, 628-635.
  2. L. Babai, P. Frankl, J. Kollár and G. Sabidussi. Hamiltonian cubic graphs and centralizers of involutions. Canad. J. Math. 31 (1979), no. 3, 458-464.
  3. E. Ballico and J. Kollár. The Picard group of singular curves. Abh. Math. Sem. Univ. Hamburg 73 (2003), 225-227.
  4. E. Ballico, S. Pasotti and F. Prantil. Geometric properties (strong t-spannedness) of generic α-stable coherent systems on smooth curves. Int. Journal of Pure and Applied Math., 20 (2005), no. 3, 369-374.
More information on Erdös number are available at the Erdös Number Project pages.