UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - V appello - 7.09.11

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Data la matrice $A_k = \begin{pmatrix} k & 1-k & -k & 0 \\ 0 & k & k & 2 \\ -1 & -k & 0 & -2 \end{pmatrix}$, al variare del parametro reale k si determinino, in $\mathbb{R}^4(\mathbb{R})$, lo spazio S_k delle soluzioni del sistema $A_k X = 0$ e la dimensione di S_k .

Risposta per
$$k \neq 1$$
 risulta dim $S_k = 1$ con $S_k = \mathcal{L}((2k, 2k, 2, -k^2 - k));$ per $k = 1$ risulta dim $S_1 = 2$ con $S_1 = \mathcal{L}((2, 0, 2, -1), (0, 2, 0 - 1))$ (pt.4

ESERCIZIO 2. Nello spazio vettoriale $\mathbb{R}^4(\mathbb{R})$ si consideri la matrice $A_k = \begin{pmatrix} 2 & 0 & 1 & 1 \\ 0 & 2 & k+1 & k \\ 0 & 0 & k & 2 \\ 0 & 0 & 2 & k \end{pmatrix}$. Si determinino, al variare di $k \in \mathbb{R}$:

• gli autovalori di A_k e le loro molteplicità algebriche e geometriche;

Risposta per
$$k \neq 0, 4: \lambda = 2, k \pm 2$$
 con $a_{(2)} = g_{(2)} = 2, \ a_{(k\pm 2)} = g_{(k\pm 2)} = 1$ per $k = 0: \lambda = -2, 2$ con $a_{(-2)} = g_{(-2)} = 1, \ a_{(2)} = 3 \neq g_{(2)} = 2,$ per $k = 4: \lambda = 2, 6$ con $a_{(2)} = 3 \neq g_{(2)} = 2, \ a_{(6)} = g_{(6)} = 1$ (pt.4)

 \bullet i valori di k per i quali A_k risulta diagonalizzabile.

Risposta $k \neq 0, 4$ _

Posto k=1, si determinino una matrice diagonale D e una matrice P che trasforma A in D per similitudine.

Risposta
$$D = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \quad P = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & -3 & 1 \end{pmatrix}$$
 _____ (pt.4)

ESERCIZIO 3. In $\tilde{E}_3(\mathbb{C})$ sono date le rette r_k : $\begin{cases} kx + (k-1)z = 1 \\ x + ky = 0 \end{cases}$ ed s_k : $\begin{cases} (k+1)x + ky + z = k \\ x = 1 \end{cases}$.

Si dica per quali valori di $k \in \mathbb{R}$ le rette esistono e sono proprie:

le rette esistono e sono proprie per ogni valore di $k \in \mathbb{R}$; Risposta

in tal caso, al variare di $k \in \mathbb{R}$, si determini la mutua posizione delle rette.

Risposta per $k \neq 0, 1$ le rette sono sghembe; per k = 0 sono complanari (parallele e distinte); per k = 1 sono complanari (incidenti).

Posto k=0 si determini un'equazione cartesiana della superficie $\mathcal Q$ descritta da s_0 nella rotazione di asse r_0 . Si riconosca la quadrica trovata e se ne determinino gli eventuali punti multipli.

Risposta
$$x^2 + z^2 + 2z = 0$$
 Si tratta di un cilindro ellittico di vertice $Y_{\infty} = [(0, 1, 0, 0)]$ (pt.5)

Si riconosca la conica ottenuta sezionando \mathcal{Q} con il piano $\alpha: x=1$ e, nel caso sia riducibile, si determini una rappresentazione cartesiana delle rette componenti. Si dia una motivazione geometrica del risultato ottenuto.

Risposta La conica è riducibile: si tratta della retta t: x - 1 = z + 1 = 0 contata due volte. Si deduce quindi che il piano di sezione è tangente lungo t al cilindro.

ESERCIZIO 4. In $\tilde{E}_2(\mathbb{C})$ si studi la conica $\mathcal{C}: 4x^2-y^2-2y+3=0$, determinandone, se esistono e sono reali, centro, asintoti, assi e vertici.

Risposta
$$C$$
 è un'iperbole di centro $C = (0, -1)$, asintoti $y = \pm 2x - 1$, assi $x = 0$ e $y = -1$, vertici $V_1 = (0, 1)$ e $V_2 = (0, -3)$. **(pt.3**)

Nella polarità associata a C, si determini il polo della retta r: x+y+1=0 e si dia una giustificazione geometrica del risultato ottenuto.

Risposta $P_{\infty} = [(1, -4, 0)]$, risulta improprio perchè r, passando per il centro, è un diametro. ______ (pt.2)

UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - V appello - 7.09.11

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Data la matrice $A_k = \begin{pmatrix} 0 & k & -1 & -2 \\ -k & -k & 0 & 2 \\ k & k+1 & -k & 0 \end{pmatrix}$, al variare del parametro reale k si determinino, in $\mathbb{R}^4(\mathbb{R})$, lo spazio S_k delle soluzioni del sistema $A_k X = 0$ e la dimensione di S_k .

Risposta per
$$k \neq -1$$
 risulta $\dim S_k = 1$ con $S_k = \mathcal{L}((2, -2k, -2k, k - k^2));$ per $k = -1$ risulta $\dim S_{-1} = 2$ con $S_{-1} = \mathcal{L}((2, 0, 2, -1), (0, 2, 0 - 1))$ _____ (pt.4)

ESERCIZIO 2. Nello spazio vettoriale $\mathbb{R}^4(\mathbb{R})$ si consideri la matrice $A_k = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & k & k-1 & 2 \\ 1 & k-1 & 2 & k-1 \end{pmatrix}$. Si determinino, al variare di $k \in \mathbb{R}$:

 \bullet gli autovalori di A_k e le loro molteplicità algebriche e geometriche;

ullet i valori di k per i quali A_k risulta diagonalizzabile.

Risposta $k \neq 1,5$ _____ (pt.2)

Posto k=2, si determinino una matrice diagonale D e una matrice P che trasforma A in D per similitudine.

Risposta
$$D = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \quad P = \begin{pmatrix} -5 & 4 & 0 & 0 \\ 3 & -3 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$
 _____ (pt.4)

ESERCIZIO 3. In $\tilde{E}_3(\mathbb{C})$ sono date le rette r_k : $\begin{cases} (k+1)y+kz=1\\ (k+1)x+y=-k-1 \end{cases}$ ed s_k : $\begin{cases} (k+1)x+(k+2)y+z=0\\ y=1 \end{cases}$. Si dica per quali valori di $k\in\mathbb{R}$ le rette esistono e sono proprie;

in tal caso, al variare di $k \in \mathbb{R}$, si determini la mutua posizione delle rette.

Risposta per $k \neq -1,0$ le rette sono sghembe; per k = -1 sono complanari (parallele e distinte); per k = 0 sono complanari (incidenti). ______ (pt.2)

Posto k = -1 si determini un'equazione cartesiana della superficie Q descritta da s_{-1} nella rotazione di asse r_{-1} . Si riconosca la quadrica trovata e se ne determinino gli eventuali punti multipli.

Risposta
$$y^2 + z^2 + 2z = 0$$
 Si tratta di un cilindro ellittico di vertice $X_{\infty} = [(1,0,0,0)]$ (pt.5)

Si riconosca la conica ottenuta sezionando \mathcal{Q} con il piano $\alpha: y=1$ e, nel caso sia riducibile, si determini una rappresentazione cartesiana delle rette componenti. Si dia una motivazione geometrica del risultato ottenuto.

Risposta La conica è riducibile: si tratta della retta t: y - 1 = z + 1 = 0 contata due volte. Si deduce quindi che il piano di sezione è tangente lungo t al cilindro ______ (pt.2)

ESERCIZIO 4. In $\tilde{E}_2(\mathbb{C})$ si studi la conica $\mathcal{C}: x^2-4y^2-8y-5=0$, determinandone, se esistono e sono reali, centro, asintoti, assi e vertici.

Risposta
$$\mathcal{C}$$
 è un'iperbole di centro $C=(0,-1)$, asintoti $x=\pm 2y\pm 2$, assi $x=0$ e $y=-1$, vertici $V_{1/2}=(\pm 1,-1)$. (pt.3)

Nella polarità associata a C, si determini il polo della retta r: x + y + 1 = 0 e si dia una giustificazione geometrica del risultato ottenuto.

Risposta $P_{\infty} = [(-4, 1, 0)]$, risulta improprio perchè r, passando per il centro, è un diametro. ______ (pt.2)