Algebra e Geometria - Algebra ed Elementi di Geometria - 4º appello - 18.06.2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\mathbb{R}^4(\mathbb{R})$, con il prodotto scalare euclideo, sono dati i sistemi A = [(1,1,0,0),(0,1,1,0),(1,0,-1,0)] e B = [(k,2,1,k),(0,2,1,k)]. Si determinino:

• $dim \mathcal{L}(A)$, $dim \mathcal{L}(B)$ e $dim(\mathcal{L}(A) + \mathcal{L}(B))$;

$$\mathbf{Risposta} \quad dim \mathcal{L}(A) = 2, \quad dim \mathcal{L}(B) = \begin{cases} 2 & k \neq 0 \\ 1 & k = 0 \end{cases}, \quad dim (\mathcal{L}(A) + \mathcal{L}(B)) = \begin{cases} 4 & k \neq 0 \\ 3 & k = 0 \end{cases}$$
 (pt.4)

• i valori di $k \in \mathbb{R}$ per i quali $\mathcal{L}(A) + \mathcal{L}(B)$ è diretta;

ullet il complemento ortogonale di A e un complemento diretto di $\mathcal{L}(A)$ diverso dal complemento ortogonale.

Risposta
$$A^{\perp} = \{(a, -a, a, b) \in \mathbb{R}^4, a, b \in \mathbb{R}\}; \quad W = \{(c, 0, 0, d) \in \mathbb{R}^4, c, d \in \mathbb{R}\}$$
 _______(pt.2)

ESERCIZIO 2. In $M_3(\mathbb{R})$ è data la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Si determinino, se possibile, una matrice diagonale D simile ad A e una relativa diagonalizzante P.

Risposta
$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 $P = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \\ -1 & -1 & 1 \end{pmatrix}$ (pt.3)

ESERCIZIO 3. In $\mathbb{R}^3(\mathbb{R})$, al variare di $k \in \mathbb{R}$, si discuta la compatibilità del sistema : $\begin{cases} kx + kz = -1 \\ x + ky = 0 \\ x - 2y + kz = 0 \end{cases}$ e, quando è

possibile, lo si risolva.

Risposta Il sistema è compatibile per
$$k \neq -1, 0, 2$$
: $S_k = \left\{ \left(\frac{-k}{(k-2)(k+1)}, \frac{1}{(k-2)(k+1)}, \frac{(2+k)}{k(k-2)(k+1)} \right) \right\}$ (pt.5)

ESERCIZIO 4. In $\widetilde{E}_2(\mathbb{C})$ è data la conica generale $\mathcal{C}: x^2 - 2y^2 - xy + 2x + 2 = 0$. Si determinino rappresentazioni cartesiane

 $\bullet\,$ dei punti impropri e del fascio dei diametri di $\mathcal{C};$

Risposta
$$P_{\infty} = [(2,1,0)], Q_{\infty} = [(-1,1,0)], \quad \lambda(2x-y+2) + \mu(x+4y) = 0, \ (\lambda,\mu) \in \mathbb{R}^2 \setminus \{(0,0)\}$$
 _____ (pt.2)

• della tangente a C in P = (0, 1).

Risposta
$$x - 4y + 4 = 0$$
 ______ (pt.1)

Si dica, motivando la risposta, se la retta r: x + 4y = 0 risulta essere un asse.

ESERCIZIO 5. In $E_3(\mathbb{R})$ con il prodotto scalare euclideo, sono date le rette r: x+y-1=0=z-2 ed s: 2y-z=0=x. Si determinino rappresentazioni cartesiane:

• del piano α , se esiste, che contiene r ed s;

Risposta
$$2x + 2y - z = 0$$
 ______ (pt.2)

 $\bullet\,$ della retta t passante per P=(1,1,1)ed ortogonale a r e s.

Risposta
$$x - y = 0 = x + 2z - 3$$
 (pt.2)

ESERCIZIO 6. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 - 3xy + 2y^2 - 2z = 0$ e se ne determinino gli eventuali punti doppi. Si scriva una rappresentazione cartesiana della conica impropria di \mathcal{Q} e, nel caso essa sia riducibile, delle sue componenti. Si riconosca la quadrica.

Si dica, motivando la risposta, se i piani $\alpha: z=0$ e $\beta: x=0$ risultano tangenti alla quadrica e, in tal caso, si determini il punto di tangenza.

Algebra e Geometria - Algebra ed Elementi di Geometria - 4º appello - 18.06.2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\mathbb{R}^4(\mathbb{R})$, con il prodotto scalare euclideo, sono dati i sistemi A = [(2,2,0,0),(1,0,-1,0)] e B = [(1,1,0,0),(k,2,1,k),(0,2,1,k)]. Si determinino:

• $dim\mathcal{L}(A)$, $dim\mathcal{L}(B)$ e $dim(\mathcal{L}(A) + \mathcal{L}(B))$;

$$\mathbf{Risposta} \quad dim \mathcal{L}(A) = 2, \quad dim \mathcal{L}(B) = \begin{cases} 3 & k \neq 0 \\ 2 & k = 0 \end{cases}, \quad dim (\mathcal{L}(A) + \mathcal{L}(B)) = \begin{cases} 4 & k \neq 0 \\ 3 & k = 0 \end{cases}$$
 (pt.4)

• i valori di $k \in \mathbb{R}$ per i quali $\mathcal{L}(A) + \mathcal{L}(B)$ è diretta:

Risposta non esistono valori di $k \in \mathbb{R}$ per i quali la somma sia diretta. (pt.1)

ullet il complemento ortogonale di A e un complemento diretto di $\mathcal{L}(A)$ diverso dal complemento ortogonale.

Risposta
$$A^{\perp} = \{(a, -a, a, b) \in \mathbb{R}^4, a, b \in \mathbb{R}\}; \quad W = \{(c, 0, 0, d) \in \mathbb{R}^4, c, d \in \mathbb{R}\}$$
 (pt.2)

ESERCIZIO 2. In $M_3(\mathbb{R})$ è data la matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Si determinino, se possibile, una matrice diagonale D simile ad A e una relativa diagonalizzante P.

Risposta
$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ (pt.3)

ESERCIZIO 3. In $\mathbb{R}^3(\mathbb{R})$, al variare di $k \in \mathbb{R}$, si discuta la compatibilità del sistema : $\begin{cases} kx + ky = 1 \\ x + kz = 0 \\ 4x - ky - 3z = 0 \end{cases}$ e, quando è

possibile, lo si risolva.

Risposta Il sistema è compatibile per
$$k \neq -3, -1, 0$$
: $S_k = \left\{ \left(\frac{k}{(k+3)(k+1)}, \frac{3+4k}{k(k+3)(k+1)}, \frac{-1}{(k+3)(k+1)} \right) \right\}$ (pt.5)

ESERCIZIO 4. In $\widetilde{E}_2(\mathbb{C})$ è data la conica generale $\mathcal{C}: x^2+y^2+2xy+2x+2=0$. Si determinino rappresentazioni cartesiane

 $\bullet\,$ dei punti impropri e del fascio dei diametri di $\mathcal{C};$

Risposta
$$P_{\infty} = [(1, -1, 0)]$$
 con molteplicità 2, $x + y = k, k \in \mathbb{R}$ ______ (pt.2)

• della tangente a C in P = (-1, 1).

Risposta
$$x+1=0$$
 _____ (pt.1)

Si dica, motivando la risposta, se la retta r: x + y = 0 risulta essere un asse.

ESERCIZIO 5. In $E_3(\mathbb{R})$ con il prodotto scalare euclideo, sono date le rette r: x-z-1=0=x+y ed s: y+2z-1=0=z-2. Si determinino rappresentazioni cartesiane:

• del piano α , se esiste, che contiene r ed s;

Risposta
$$y+z+1=0$$
 ______(pt.2)

 $\bullet\,$ della retta t passante per P=(1,1,1)ed ortogonale a r e s.

Risposta
$$x - 1 = 0 = y - z$$
 (pt.2)

ESERCIZIO 6. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 + 2y^2 - 2z = 0$ e se ne determinino gli eventuali punti doppi. Si scriva una rappresentazione cartesiana della conica impropria di \mathcal{Q} e, nel caso essa sia riducibile, delle sue componenti. Si riconosca la quadrica.

Risposta Si tratta di una quadrica generale. $C_{\infty}: (x_1 - \sqrt{2}ix_2)(x_1 + \sqrt{2}ix_2) = x_4 = 0$ è una conica riducibile nell'unione delle rette $r_{\infty}: x_1 - \sqrt{2}ix_2 = x_4 = 0$ ed $s_{\infty}: x_1 + \sqrt{2}ix_2 = x_4 = 0$. Dunque Q è un paraboloide ellittico. ______ (pt.3)

Si dica, motivando la risposta, se i piani $\alpha: z=0$ e $\beta: x=0$ risultano tangenti alla quadrica e, in tal caso, si determini il punto di tangenza.

Algebra e Geometria - Algebra ed Elementi di Geometria - 4º appello - 18.06.2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\mathbb{R}^4(\mathbb{R})$, con il prodotto scalare euclideo, sono dati i sistemi A = [(1,1,0,0),(1,0,-1,0)] e B =[(k, 2, 1, k), (0, 1, 1, 0), (0, 2, 1, k)]. Si determinino:

• $dim \mathcal{L}(A)$, $dim \mathcal{L}(B)$ e $dim(\mathcal{L}(A) + \mathcal{L}(B))$;

$$\mathbf{Risposta} \quad dim \mathcal{L}(A) = 2, \quad dim \mathcal{L}(B) = \begin{cases} 3 & k \neq 0 \\ 2 & k = 0 \end{cases}, \quad dim (\mathcal{L}(A) + \mathcal{L}(B)) = \begin{cases} 4 & k \neq 0 \\ 3 & k = 0 \end{cases}$$
 (pt.4)

• i valori di $k \in \mathbb{R}$ per i quali $\mathcal{L}(A) + \mathcal{L}(B)$ è diretta:

Risposta non esistono valori di $k \in \mathbb{R}$ per i quali la somma sia diretta $_{\perp}$ (pt.1)

• il complemento ortogonale di A e un complemento diretto di $\mathcal{L}(A)$ diverso dal complemento ortogonale.

Risposta
$$A^{\perp} = \{(a, -a, a, b) \in \mathbb{R}^4, a, b \in \mathbb{R}\}; \quad W = \{(c, 0, 0, d) \in \mathbb{R}^4, c, d \in \mathbb{R}\}$$
 (pt.2)

ESERCIZIO 2. In $M_3(\mathbb{R})$ è data la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

Si determinino, se possibile, una matrice diagonale D simile ad A e una relativa diagonalizzante P.

Risposta
$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ (pt.3)

ESERCIZIO 3. In $\mathbb{R}^3(\mathbb{R})$, al variare di $k \in \mathbb{R}$, si discuta la compatibilità del sistema : $\begin{cases} kx + z = 0 \\ 2x + ky + 3z = 0 \end{cases}$ e, quando è ky + kz = 1

possibile, lo si risolva.

Risposta Il sistema è compatibile per
$$k \neq 0, 1, 2$$
: $S_k = \left\{ \left(\frac{-1}{(k-2)(k-1)}, \frac{2-3k}{k(k-2)(k-1)}, \frac{k}{(k-2)(k-1)} \right) \right\}$ (pt.5)

ESERCIZIO 4. In $\widetilde{E}_2(\mathbb{C})$ è data la conica generale $\mathcal{C}: x^2 - 2y^2 + xy - 2x = 0$. Si determinino rappresentazioni cartesiane

• dei punti impropri e del fascio dei diametri di C;

Risposta
$$P_{\infty} = [(2, -1, 0)], \ Q_{\infty} = [(1, 1, 0)], \ \lambda(2x + y - 2) + \mu(x - 4y) = 0, \ (\lambda, \mu) \in \mathbb{R}^2 \setminus \{(0, 0)\}$$
 _____ (pt.2)

• della tangente a C in P = (2,0).

Risposta
$$x + y - 2 = 0$$
 ______ (pt.1)

Si dica, motivando la risposta, se la retta r: x - 4y = 0 risulta essere un asse.

Risposta La retta assegnata è la polare di Y_{∞} , dunque, pur essendo un diametro, non è un asse poiché non risulta ortogonale al proprio polo. -

ESERCIZIO 5. In $E_3(\mathbb{R})$ con il prodotto scalare euclideo, sono date le rette r: 2x + y - 1 = 0 = x - 2 ed s: x - z + 1 = 00 = y + z. Si determinino rappresentazioni cartesiane:

• del piano α , se esiste, che contiene r ed s;

Risposta
$$x + y + 1 = 0$$
 _______(pt.2

 $\bullet\,$ della retta t passante per P=(1,1,1)ed ortogonale a r e s.

ESERCIZIO 6. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: y^2 - z^2 - 2x = 0$ e se ne determinino gli eventuali punti doppi. Si scriva una rappresentazione cartesiana della conica impropria di Q e, nel caso essa sia riducibile, delle sue componenti. Si riconosca la quadrica.

Risposta Si tratta di una quadrica generale. $C_{\infty}: (x_2-x_3)(x_2+x_3)=x_4=0$ è una conica riducibile nell'unione delle

Si dica, motivando la risposta, se i piani $\alpha: x=0$ e $\beta: z=0$ risultano tangenti alla quadrica e, in tal caso, si determini il punto di tangenza.

Risposta Dato che Q è una quadrica generale e $Q \cap \alpha$ è riducibile, α è tangente a Q; O = (0,0,0), punto doppio della

Algebra e Geometria - Algebra ed Elementi di Geometria - 4º appello - 18.06.2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\mathbb{R}^4(\mathbb{R})$, con il prodotto scalare euclideo, sono dati i sistemi A = [(2, 1, -1, 0), (0, 1, 1, 0), (1, 1, 0, 0)] e B = [(k, 0, 0, k), (k, 2, 1, k)]. Si determinino:

• $dim \mathcal{L}(A)$, $dim \mathcal{L}(B)$ e $dim(\mathcal{L}(A) + \mathcal{L}(B))$;

$$\mathbf{Risposta} \quad dim \mathcal{L}(A) = 2, \quad dim \mathcal{L}(B) = \begin{cases} 2 & k \neq 0 \\ 1 & k = 0 \end{cases}, \quad dim (\mathcal{L}(A) + \mathcal{L}(B)) = \begin{cases} 4 & k \neq 0 \\ 3 & k = 0 \end{cases}$$
 (pt.4)

• i valori di $k \in \mathbb{R}$ per i quali $\mathcal{L}(A) + \mathcal{L}(B)$ è diretta;

ullet il complemento ortogonale di A e un complemento diretto di $\mathcal{L}(A)$ diverso dal complemento ortogonale.

Risposta
$$A^{\perp} = \{(a, -a, a, b) \in \mathbb{R}^4, a, b \in \mathbb{R}\}; \quad W = \{(c, 0, 0, d) \in \mathbb{R}^4, c, d \in \mathbb{R}\}$$
 (pt.2)

ESERCIZIO 2. In $M_3(\mathbb{R})$ è data la matrice $A = \begin{pmatrix} 1 & 0 & \sqrt{6} \\ 0 & 0 & 0 \\ \sqrt{6} & 0 & 0 \end{pmatrix}$.

Si determinino, se possibile, una matrice diagonale D simile ad A e una relativa diagonalizzante P.

Risposta
$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 $P = \begin{pmatrix} 0 & -\sqrt{2} & \sqrt{3} \\ 1 & 0 & 0 \\ 0 & \sqrt{3} & \sqrt{2} \end{pmatrix}$ (pt.3)

ESERCIZIO 3. In $\mathbb{R}^3(\mathbb{R})$, al variare di $k \in \mathbb{R}$, si discuta la compatibilità del sistema : $\begin{cases} 2x + 3y - kz = 0 \\ kx + kz = 1 \\ x + ky = 0 \end{cases}$ e, quando è

possibile, lo si risolva.

Risposta Il sistema è compatibile per
$$k \neq -3, 0, 1$$
: $S_k = \left\{ \left(\frac{k}{(k+3)(k-1)}, \frac{-1}{(k+3)(k-1)}, \frac{2k-3}{k(k+3)(k-1)} \right) \right\}$ (pt.5)

ESERCIZIO 4. In $\widetilde{E}_2(\mathbb{C})$ è data la conica generale $\mathcal{C}: x^2 + 4y^2 - 4xy + 2x + 1 = 0$. Si determinino rappresentazioni cartesiane

• dei punti impropri e del fascio dei diametri di C;

Risposta $P_{\infty} = [(2,1,0)]$ con molteplicità 2, $x-2y=k, k \in \mathbb{R}$ ______ (pt.2)

• della tangente a C in P = (-1, 0).

Risposta
$$y = 0$$
 ______ (pt.1)

Si dica, motivando la risposta, se la retta r: x - 2y = 0 risulta essere un asse.

ESERCIZIO 5. In $E_3(\mathbb{R})$ con il prodotto scalare euclideo, sono date le rette r: x+z-1=0=y-2 ed s: y-2z=0=x. Si determinino rappresentazioni cartesiane:

• del piano α , se esiste, che contiene r ed s;

Risposta
$$2x - y + 2z = 0$$
 (pt.2)

• della retta t passante per P = (1, 1, 1) ed ortogonale a r e s.

Risposta
$$x - z = 0 = 2y + z - 3$$
 (pt.2)

ESERCIZIO 6. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 + xy - 2y^2 - z = 0$ e se ne determinino gli eventuali punti doppi. Si scriva una rappresentazione cartesiana della conica impropria di \mathcal{Q} e, nel caso essa sia riducibile, delle sue componenti. Si riconosca la quadrica.

Si dica, motivando la risposta, se i piani $\alpha: z=0$ e $\beta: x=0$ risultano tangenti alla quadrica e, in tal caso, si determini il punto di tangenza.

Risposta Dato che \mathcal{Q} è una quadrica generale e $\mathcal{Q} \cap \alpha$ è riducibile, α è tangente a \mathcal{Q} ; O = (0,0,0), punto doppio della conica $\mathcal{Q} \cap \alpha$, è il punto di tangenza. Essendo, al contrario, $\mathcal{Q} \cap \beta$ irriducibile, β non è tangente a \mathcal{Q} . **(pt.3)**