Algebra e Geometria - 2º test - 08/01/2020

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\widetilde{E}_3(\mathbb{R})$, è data la sfera Σ : $x^2 + y^2 + z^2 + 4y - 2z - 4 = 0$.

• Si determinino delle equazioni cartesiane per le due sfere Σ_1 e Σ_2 tangenti alla sfera Σ e con centro in C(0,1,5).

Risposta $\Sigma_1: x^2 + y^2 + z^2 - 2y - 10z - 38 = 0, \qquad \Sigma_2: x^2 + y^2 + z^2 - 2y - 10z + 22 = 0$ (pt.3G)

 $\bullet\,$ Si determini la natura dei punti semplici di $\Sigma.$

Risposta Punti semplici ellittici ______(pt.1G

ESERCIZIO 2. In $\widetilde{E}_2(\mathbb{C})$ si considerino, al variare del parametro reale k, le coniche C_k : $x^2-4xy+ky^2+2y-4=0$. Si determinino i valori di $k \in \mathbb{R}$ per i quali:

• C_k ammette due asintoti tra loro ortogonali;

Risposta k = -1 ______ (pt.1G)

• il centro di C_k è il punto $\left(-\frac{1}{2}, -\frac{1}{4}\right)$;

Risposta k = 8 _______(pt.2G

• i due punti P = (2,1) e Q = (1,2) sono coniugati rispetto a C_k .

Risposta k = 9/2 ______(pt.1G)

Posto k = 4, si riconosca C_4 e se ne determinino, se esistono e sono reali, centro, asintoti e assi.

ESERCIZIO 3. In $\widetilde{E}_3(\mathbb{C})$ si considerino le rette r: 3x+y-3=0=x+z-1 ed s: x-2y=0=y+z-1. Si determini:

• un'equazione cartesiana del piano contenente r e ortogonale a s;

Risposta 2x + y - z - 2 = 0 ______ (pt.2G)

 $\bullet\,$ un'equazione cartesiana del piano contenente r e parallelo a s.

Risposta 4x - y + 7z - 4 = 0 ______ (pt.2G)

Algebra e Geometria - 2^o test - 08/01/2020

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\widetilde{E}_3(\mathbb{R})$, è data la sfera $\Sigma: x^2+y^2+z^2-6y-10z+25=0$.

• Si determinino delle equazioni cartesiane per le due sfere Σ_1 e Σ_2 tangenti alla sfera Σ e con centro in C(0,-1,2).

Risposta $\Sigma_1: x^2 + y^2 + z^2 + 2y - 4z + 1 = 0, \qquad \Sigma_2: x^2 + y^2 + z^2 + 2y - 4z - 59 = 0$ ___ (pt.3G)

• Si determini la natura dei punti semplici di Σ .

Risposta Punti semplici ellittici ______(pt.1G)

ESERCIZIO 2. In $\widetilde{E}_2(\mathbb{C})$ si considerino, al variare del parametro reale k, le coniche C_k : $(k-1)x^2 - 6xy + y^2 + 2x - 3 = 0$. Si determinino i valori di $k \in \mathbb{R}$ per i quali:

• C_k ammette due asintoti tra loro ortogonali;

• il centro di C_k è il punto $\left(-\frac{1}{6}, -\frac{1}{2}\right)$;

Risposta k = 16 _____ (pt.2G)

• i due punti P = (2,1) e Q = (1,2) sono coniugati rispetto a C_k .

Risposta k = 15/2 ______(pt.1G)

Posto k = 10, si riconosca C_{10} e se ne determinino, se esistono e sono reali, centro, asintoti e assi.

ESERCIZIO 3. In $\widetilde{E}_3(\mathbb{C})$ si considerino le rette r: x+z-3=0=y-2z-1 ed s: x-3z=0=y-z-1. Si determini:

 \bullet un'equazione cartesiana del piano contenente r e ortogonale a s;

Risposta 3x + y + z - 10 = 0 (pt.2G)

ullet un'equazione cartesiana del piano contenente r e parallelo a s.

Risposta x + 4y - 7z - 7 = 0 ______(pt.2G

Algebra e Geometria - 2^o test - 08/01/2020

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\widetilde{E}_3(\mathbb{R})$, è data la sfera $\Sigma: x^2+y^2+z^2-4x-10z+28=0$.

• Si determinino delle equazioni cartesiane per le due sfere Σ_1 e Σ_2 tangenti alla sfera Σ e con centro in C(-1,0,1).

Risposta $\Sigma_1: x^2 + y^2 + z^2 + 2x - 2z - 34 = 0, \qquad \Sigma_2: x^2 + y^2 + z^2 + 2x - 2z - 14 = 0$ __ (pt.3G)

• Si determini la natura dei punti semplici di Σ .

Risposta Punti semplici ellittici ______(pt.1G)

ESERCIZIO 2. In $\widetilde{E}_2(\mathbb{C})$ si considerino, al variare del parametro reale k, le coniche C_k : $x^2 - 4xy + (k-2)y^2 - 2y - 2 = 0$. Si determinino i valori di $k \in \mathbb{R}$ per i quali:

• C_k ammette due asintoti tra loro ortogonali;

Risposta k = 1 ______ (pt.1G)

• il centro di C_k è il punto $\left(-\frac{1}{2}, -\frac{1}{4}\right)$;

Risposta k=2 ______(pt.2G)

• i due punti P = (2,1) e Q = (1,2) sono coniugati rispetto a C_k .

Risposta k = 17/2 ______(pt.1G)

Posto k=6, si riconosca \mathcal{C}_6 e se ne determinino, se esistono e sono reali, centro, asintoti e assi.

ESERCIZIO 3. In $\widetilde{E}_3(\mathbb{C})$ si considerino le rette r: x+y-2=0=y-z+2 ed s: 2x+y=0=3x-z+1. Si determini:

 \bullet un'equazione cartesiana del piano contenente r e ortogonale a s;

Risposta x - 2y + 3z - 8 = 0 (pt.2G)

ullet un'equazione cartesiana del piano contenente r e parallelo a s.

Risposta 5x + 4y + z - 12 = 0 (pt.2G)

Algebra e Geometria - 2^o test - 08/01/2020

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\widetilde{E}_3(\mathbb{R})$, è data la sfera $\Sigma: x^2+y^2+z^2-2y+4z-4=0$.

• Si determinino delle equazioni cartesiane per le due sfere Σ_1 e Σ_2 tangenti alla sfera Σ e con centro in C(0, -2, 2).

Risposta $\Sigma_1: x^2 + y^2 + z^2 + 4y - 4z - 56 = 0, \qquad \Sigma_2: x^2 + y^2 + z^2 + 4y - 4z + 4 = 0$ ____ (pt.3G)

• Si determini la natura dei punti semplici di Σ .

Risposta Punti semplici ellittici ______(pt.1G)

ESERCIZIO 2. In $\widetilde{E}_2(\mathbb{C})$ si considerino, al variare del parametro reale k, le coniche C_k : $(k+1)x^2 - 6xy + y^2 + 4x - 4 = 0$. Si determinino i valori di $k \in \mathbb{R}$ per i quali:

• C_k ammette due asintoti tra loro ortogonali;

Risposta k = -2 ______(pt.1G)

• il centro di C_k è il punto $\left(-\frac{1}{6}, -\frac{1}{2}\right)$;

Risposta k = 20 _____ (pt.2G)

• i due punti P = (2,1) e Q = (1,2) sono coniugati rispetto a C_k .

Risposta k = 9/2 ______(pt.1G

Posto k=8, si riconosca \mathcal{C}_8 e se ne determinino, se esistono e sono reali, centro, asintoti e assi.

Risposta Parabola; $C_{\infty} = [(1,3,0)];$ 15x - 5y + 3 = 0 ______ (pt.3G)

ESERCIZIO 3. In $\widetilde{E}_3(\mathbb{C})$ si considerino le rette r: x+y-1=0=3y+z-3 ed s: x+z-1=0=y-2z. Si determini:

 \bullet un'equazione cartesiana del piano contenente r e ortogonale a s;

Risposta x - 2y - z + 2 = 0 (pt.2G)

 $\bullet\,$ un'equazione cartesiana del piano contenente r e parallelo a s.

Risposta 7x + 4y - z - 4 = 0 _______(pt.2G

Algebra e Geometria - 2º test - 08/01/2020

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\widetilde{E}_3(\mathbb{R})$, è data la sfera Σ : $x^2 + y^2 + z^2 - 4x - 8y + 4 = 0$.

• Si determinino delle equazioni cartesiane per le due sfere Σ_1 e Σ_2 tangenti alla sfera Σ e con centro in C(-2,1,0).

Risposta $\Sigma_1: x^2 + y^2 + z^2 + 4x - 2y - 76 = 0, \qquad \Sigma_2: x^2 + y^2 + z^2 + 4x - 2y + 4 = 0$ ___ (pt.3G)

• Si determini la natura dei punti semplici di Σ .

Risposta Punti semplici ellittici ______(pt.1G)

ESERCIZIO 2. In $\widetilde{E}_2(\mathbb{C})$ si considerino, al variare del parametro reale k, le coniche C_k : $x^2 - 4xy + (k+2)y^2 + 2y - 4 = 0$. Si determinino i valori di $k \in \mathbb{R}$ per i quali:

• C_k ammette due asintoti tra loro ortogonali;

Risposta k = -3 ______(pt.1G)

• il centro di C_k è il punto $\left(-\frac{1}{2}, -\frac{1}{4}\right)$;

Risposta k = 6 ______ (pt.2G)

• i due punti P = (2,1) e Q = (1,2) sono coniugati rispetto a C_k .

Risposta k = 5/2 ______(pt.1G)

Posto k=2, si riconosca \mathcal{C}_2 e se ne determinino, se esistono e sono reali, centro, asintoti e assi.

Risposta Parabola; $C_{\infty} = [(2, 1, 0)];$ 5x - 10y - 2 = 0 ______ (pt.3G)

ESERCIZIO 3. In $\widetilde{E}_3(\mathbb{C})$ si considerino le rette r: 2x-z+1=0=x+y-3 ed s: 3x-y=0=x-z+1. Si determini:

 \bullet un'equazione cartesiana del piano contenente r e ortogonale a s;

Risposta x + 3y + z - 10 = 0 (pt.2G)

ullet un'equazione cartesiana del piano contenente r e parallelo a s.

Risposta 7x - y - 4z + 7 = 0 _______(pt.2G

Algebra e Geometria - 2^o test - 08/01/2020

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\widetilde{E}_3(\mathbb{R})$, è data la sfera Σ : $x^2 + y^2 + z^2 - 10x - 4z + 13 = 0$.

• Si determinino delle equazioni cartesiane per le due sfere Σ_1 e Σ_2 tangenti alla sfera Σ e con centro in C(1,0,-1).

Risposta $\Sigma_1: x^2 + y^2 + z^2 - 2x + 2z - 79 = 0, \qquad \Sigma_2: x^2 + y^2 + z^2 - 2x + 2z + 1 = 0$ ____ (pt.3G)

• Si determini la natura dei punti semplici di Σ .

Risposta Punti semplici ellittici ______(pt.1G)

ESERCIZIO 2. In $\widetilde{E}_2(\mathbb{C})$ si considerino, al variare del parametro reale k, le coniche \mathcal{C}_k : $(k-2)x^2 - 6xy + y^2 + 2x - 3 = 0$. Si determinino i valori di $k \in \mathbb{R}$ per i quali:

• C_k ammette due asintoti tra loro ortogonali;

• il centro di C_k è il punto $\left(-\frac{1}{6}, -\frac{1}{2}\right)$;

Risposta k = 17 _____ (pt.2G)

• i due punti P = (2,1) e Q = (1,2) sono coniugati rispetto a C_k .

Risposta k = 17/2 ______(pt.1G)

Posto k = 11, si riconosca C_{11} e se ne determinino, se esistono e sono reali, centro, asintoti e assi.

ESERCIZIO 3. In $\widetilde{E}_3(\mathbb{C})$ si considerino le rette r: x-z-2=0=y+z-2 ed s: x-3y-1=0=2y+z. Si determini:

 \bullet un'equazione cartesiana del piano contenente r e ortogonale a s;

Risposta 3x + y - 2z - 8 = 0 ______ (pt.2G)

ullet un'equazione cartesiana del piano contenente r e parallelo a s.

Risposta x + 5y + 4z - 12 = 0 (pt.2G)

Algebra e Geometria - 2^o test - 08/01/2020

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\widetilde{E}_3(\mathbb{R})$, è data la sfera $\Sigma: x^2 + y^2 + z^2 - 2x + 4y + 1 = 0$.

• Si determinino delle equazioni cartesiane per le due sfere Σ_1 e Σ_2 tangenti alla sfera Σ e con centro in C(-2,2,0).

Risposta $\Sigma_1: x^2 + y^2 + z^2 + 4x - 4y - 41 = 0, \qquad \Sigma_2: x^2 + y^2 + z^2 + 4x - 4y - 1 = 0$ ___ (pt.3G)

 $\bullet\,$ Si determini la natura dei punti semplici di $\Sigma.$

Risposta Punti semplici ellittici ______(pt.1G)

ESERCIZIO 2. In $\widetilde{E}_2(\mathbb{C})$ si considerino, al variare del parametro reale k, le coniche C_k : $x^2 - 4xy + (k+1)y^2 + 2y - 4 = 0$. Si determinino i valori di $k \in \mathbb{R}$ per i quali:

• C_k ammette due asintoti tra loro ortogonali;

Risposta k = -2 ______(pt.1G)

• il centro di C_k è il punto $\left(-\frac{1}{2}, -\frac{1}{4}\right)$;

Risposta k = 7 ______ (pt.2G)

• i due punti P = (2,1) e Q = (1,2) sono coniugati rispetto a C_k .

Risposta k = 7/2 ______(pt.1G

Posto k=3, si riconosca \mathcal{C}_3 e se ne determinino, se esistono e sono reali, centro, asintoti e assi.

Risposta Parabola; $C_{\infty} = [(2, 1, 0)];$ 5x - 10y - 2 = 0 ______ (pt.3G)

ESERCIZIO 3. In $\widetilde{E}_3(\mathbb{C})$ si considerino le rette r: y+z-1=0=x+3z-3 ed s: x+y-1=0=2x-z. Si determini:

 \bullet un'equazione cartesiana del piano contenente r e ortogonale a s;

Risposta x - y + 2z - 2 = 0 (pt.2G)

 $\bullet\,$ un'equazione cartesiana del piano contenente r e parallelo a s.

Risposta x - 7y - 4z + 4 = 0 _______(pt.2G

Algebra e Geometria - 2^o test - 08/01/2020

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\widetilde{E}_3(\mathbb{R})$, è data la sfera Σ : $x^2 + y^2 + z^2 - 6x - 10y + 33 = 0$.

• Si determinino delle equazioni cartesiane per le due sfere Σ_1 e Σ_2 tangenti alla sfera Σ e con centro in C(-1,2,0).

Risposta $\Sigma_1: x^2 + y^2 + z^2 + 2x - 4y - 31 = 0, \qquad \Sigma_2: x^2 + y^2 + z^2 + 2x - 4y - 11 = 0$ __ (pt.3G)

• Si determini la natura dei punti semplici di Σ .

Risposta Punti semplici ellittici ______(pt.1G)

ESERCIZIO 2. In $\widetilde{E}_2(\mathbb{C})$ si considerino, al variare del parametro reale k, le coniche C_k : $x^2 - 4xy + (k-1)y^2 - 2y - 2 = 0$. Si determinino i valori di $k \in \mathbb{R}$ per i quali:

• C_k ammette due asintoti tra loro ortogonali;

• il centro di C_k è il punto $\left(-\frac{1}{2}, -\frac{1}{4}\right)$;

Risposta k=1 _____ (pt.2G)

• i due punti P = (2,1) e Q = (1,2) sono coniugati rispetto a C_k .

Risposta k = 15/2 ______(pt.1G)

Posto k = 5, si riconosca C_5 e se ne determinino, se esistono e sono reali, centro, asintoti e assi.

Risposta Parabola; $C_{\infty} = [(2, 1, 0)];$ 5x - 10y + 2 = 0 ______ (pt.3G)

ESERCIZIO 3. In $\widetilde{E}_3(\mathbb{C})$ si considerino le rette r: x-2y-1=0=y+z-3 ed s: x-y-1=0=3y-z. Si determini:

 \bullet un'equazione cartesiana del piano contenente r e ortogonale a s;

Risposta x + y + 3z - 10 = 0 (pt.2G)

 $\bullet\,$ un'equazione cartesiana del piano contenente r e parallelo a s.

Risposta 4x - 7y + z - 7 = 0 (pt.2G)

Algebra e Geometria - 2^o test - 08/01/2020

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. In $\widetilde{E}_3(\mathbb{R})$, è data la sfera Σ : $x^2 + y^2 + z^2 - 8x - 4z + 16 = 0$.

• Si determinino delle equazioni cartesiane per le due sfere Σ_1 e Σ_2 tangenti alla sfera Σ e con centro in C(1,0,-2).

Risposta $\Sigma_1: x^2 + y^2 + z^2 - 2x + 4z - 44 = 0, \qquad \Sigma_2: x^2 + y^2 + z^2 - 2x + 4z - 4 = 0$ ___ (pt.3G)

• Si determini la natura dei punti semplici di Σ .

Risposta Punti semplici ellittici ______ (pt.1G)

ESERCIZIO 2. In $\widetilde{E}_2(\mathbb{C})$ si considerino, al variare del parametro reale k, le coniche C_k : $kx^2-6xy+y^2+4x-4=0$. Si determinino i valori di $k \in \mathbb{R}$ per i quali:

• C_k ammette due asintoti tra loro ortogonali;

Risposta k = -1 ______ (pt.1G)

• il centro di C_k è il punto $\left(-\frac{1}{6}, -\frac{1}{2}\right)$;

Risposta k = 21 _____ (pt.2G)

• i due punti P = (2,1) e Q = (1,2) sono coniugati rispetto a C_k .

Risposta k = 11/2 ______(pt.1G)

Posto k = 9, si riconosca C_9 e se ne determinino, se esistono e sono reali, centro, asintoti e assi.

Risposta Parabola; $C_{\infty} = [(1,3,0)];$ 15x - 5y + 3 = 0 ______ (pt.3G)

ESERCIZIO 3. In $\widetilde{E}_3(\mathbb{C})$ si considerino le rette r: x-y+2=0=x+z-2 ed s: x+2z=0=y-3z-1. Si determini:

 \bullet un'equazione cartesiana del piano contenente r e ortogonale a s;

Risposta 2x - 3y - z + 8 = 0 (pt.2G)

ullet un'equazione cartesiana del piano contenente r e parallelo a s.

Risposta 4x + y + 5z - 12 = 0 (pt.2G)